(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
anchored(Cons(x, xs), y) → anchored(xs, Cons(Cons(Nil, Nil), y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
anchored(Cons(x, xs), y) → anchored(xs, Cons(Cons(Nil, Nil), y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)
Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
anchored
(8) Obligation:
Innermost TRS:
Rules:
anchored(
Cons(
xs),
y) →
anchored(
xs,
Cons(
y))
anchored(
Nil,
y) →
ygoal(
x,
y) →
anchored(
x,
y)
Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
anchored
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
anchored(
gen_Cons:Nil2_0(
n4_0),
gen_Cons:Nil2_0(
b)) →
gen_Cons:Nil2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
anchored(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)
Induction Step:
anchored(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
anchored(gen_Cons:Nil2_0(n4_0), Cons(gen_Cons:Nil2_0(b))) →IH
gen_Cons:Nil2_0(+(+(b, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
anchored(
Cons(
xs),
y) →
anchored(
xs,
Cons(
y))
anchored(
Nil,
y) →
ygoal(
x,
y) →
anchored(
x,
y)
Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
anchored(
Cons(
xs),
y) →
anchored(
xs,
Cons(
y))
anchored(
Nil,
y) →
ygoal(
x,
y) →
anchored(
x,
y)
Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)